login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000051 a(n) = 2^n + 1.
(Formerly M0717 N0266)
190

%I M0717 N0266

%S 2,3,5,9,17,33,65,129,257,513,1025,2049,4097,8193,16385,32769,65537,

%T 131073,262145,524289,1048577,2097153,4194305,8388609,16777217,

%U 33554433,67108865,134217729,268435457,536870913,1073741825,2147483649

%N a(n) = 2^n + 1.

%C Same as Pisot sequence L(2,3).

%C Length of the continued fraction for sum(k=0,n,1/3^(2^k)). - _Benoit Cloitre_, Nov 12 2003

%C See also A004119 for a(n) = 2a(n-1)-1 with first term = 1. - _Philippe Deléham_, Feb 20 2004

%C From the second term on (n>=1), in base 2, these numbers present the pattern 1000...0001 (with n-1 zeros), which is the "opposite" of the binary 2^n-2: (0)111...1110 (cf. A000918). - _Alexandre Wajnberg_, May 31 2005

%C Numbers n for which the expression 2^n/(n-1) is an integer. - _Paolo P. Lava_, May 12 2006

%C a(n) = A127904(n+1) for n>0. - _Reinhard Zumkeller_, Feb 05 2007

%C a(n) = A024036(n)/A000225(n). - _Reinhard Zumkeller_, Feb 14 2009

%C a(n) = a(n-1)-th odd numbers (A004273) for n >= 1. - _Jaroslav Krizek_, Apr 25 2009

%C Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)charpoly(A,3). - _Milan Janjic_, Jan 27 2010

%C a(n)*A000225(n) = A000225(2*n); a(n) = A173786(n,0). - _Reinhard Zumkeller_, Feb 28 2010

%C First differences of A006127. - _Reinhard Zumkeller_, Apr 14 2011

%C The odd prime numbers in this sequence form A019434, the Fermat primes. - _David W. Wilson_, Nov 16 2011

%C Pisano period lengths: 1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 10, 2, 12, 3, 4, 1, 8, 6, 18, 4, ... . - _R. J. Mathar_, Aug 10 2012

%C Is the mentioned Pisano period lengths (see above) the same as A007733? - _Omar E. Pol_, Aug 10 2012

%C Only positive integers that are not 1 mod (2k+1) for any k>1. - _Jon Perry_, Oct 16 2012

%C For n >= 1, a(n) is the total length of the segments of the Hilbert curve after n iterations. - _Kival Ngaokrajang_, Mar 30 2014

%C Frénicle de Bessy (1657) proved that a(3) = 9 is the only square in this sequence. - _Charles R Greathouse IV_, May 13 2014

%C a(A006521(n)) mod A006521(n) = 0. - _Reinhard Zumkeller_, Jul 17 2014

%C a(n) is the number of distinct possible sums made with at most two elements in {1,...a(n-1)} for n > 0. - _Derek Orr_, Dec 13 2014

%C For n > 0, given any set of a(n) lattice points in R^n, there exists 2 distinct members in this set whose midpoint is also a lattice point. - _Melvin Peralta_, Jan 28 2017

%D P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.

%D Bernard Frénicle de Bessy, Solutio duorum problematum circa numeros cubos et quadratos (1657). Bibliothèque Nationale de Paris.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Ivan Panchenko, <a href="/A000051/b000051.txt">Table of n, a(n) for n = 0..100</a>

%H E. R. Berlekamp, <a href="/A257113/a257113.pdf">A contribution to mathematical psychometrics</a>, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=114">Encyclopedia of Combinatorial Structures 114</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=362">Encyclopedia of Combinatorial Structures 362</a>

%H Edouard Lucas, <a href="http://www.mathstat.dal.ca/FQ/Books/Complete/simply-periodic.pdf">The Theory of Simply Periodic Numerical Functions</a>, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.

%H Kival Ngaokrajang, <a href="/A000051/a000051_1.pdf">Illustration of Hilbert curve for n = 1..5</a>

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/MasterThesis.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/FonctionsGeneratrices.pdf">1031 Generating Functions and Conjectures</a>, Université du Québec à Montréal, 1992.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fermat-LucasNumber.html">Fermat-Lucas Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rudin-ShapiroSequence.html">Rudin-Shapiro Sequence</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HilbertCurve.html">Hilbert curve</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2)

%F a(n) = 2*a(n-1) - 1 = 3*a(n-1) - 2*a(n-2).

%F G.f.: (2-3*x)/((1-x)*(1-2*x)).

%F First differences of A052944. - _Emeric Deutsch_, Mar 04 2004

%F a(0) = 1, then a(n) = (Sum i=0..n-1 a(i)) - (n-2). - _Gerald McGarvey_, Jul 10 2004

%F Inverse binomial transform of A007689. Also, V sequence in Lucas sequence L(3, 2). - _Ross La Haye_, Feb 07 2005

%F Equals binomial transform of [2, 1, 1, 1, ...]. - _Gary W. Adamson_, Apr 23 2008

%F a(n) = A000079(n)+1. - _Omar E. Pol_, May 18 2008

%F E.g.f.: exp(x) + exp(2*x). - _Mohammad K. Azarian_, Jan 02 2009

%F From _Peter Luschny_, Apr 20 2009: (Start)

%F A weighted binomial sum of the Bernoulli numbers A027641/A027642 with A027641(1)=1 (which amounts to the definition B_{n} = B_{n}(1)).

%F a(n) = Sum_{k=0..n} C(n,k)*B_{n-k}*2^(k+1)/(k+1). (See also A052584.) (End)

%F If p[i]=fibonacci(i-4) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - _Milan Janjic_, May 08 2010

%F a(n+2) = a(n) + a(n+1) + A000225(n). - _Ivan N. Ianakiev_, Jun 24 2012

%p A000051:=-(-2+3*z)/(2*z-1)/(z-1); # _Simon Plouffe_ in his 1992 dissertation

%p a := n -> add(binomial(n,k)*bernoulli(n-k,1)*2^(k+1)/(k+1),k=0..n); # _Peter Luschny_, Apr 20 2009

%t Table[2^n + 1, {n, 0, 33}]

%o (PARI) a(n)=2^n+1

%o (Haskell)

%o a000051 = (+ 1) . a000079

%o a000051_list = iterate ((subtract 1) . (* 2)) 2

%o -- _Reinhard Zumkeller_, May 03 2012

%Y Apart from the initial 1, identical to A094373.

%Y See A008776 for definitions of Pisot sequences. Cf. A034472, A052539, A034474, A062394, A034491, A062395, A062396, A062397, A007689, A063376, A063481, A074600-A074624, A034524, A178248, A228081.

%Y Cf. A052944.

%Y Column 2 of array A103438.

%Y Cf. A000079, A005126, A176691, A194455.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 22 19:31 EDT 2017. Contains 286885 sequences.